
Sobel Filter

Ray Seyfarth

August 7, 2011

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Outline

1 Overview

2 Sobel in C

3 Sobel computed using SSE instructions

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Overview

The Sobel filter is an image processing edge detection algorithm

It involves convolution of 3 × 3 image windows with 2 convolution
matrices

Sx =

−1 0 1
−2 0 2
−1 0 1

 Sy =

−1 −2 −1
0 0 0
1 2 1

The edge value, G , for a pixel at (r , c) is computed by

Gx =
1∑

i=−1

1∑
j=−1

(Sx ,i ,j ∗ Ir+i ,c+i)

Gy =
1∑

i=−1

1∑
j=−1

(Sy ,i ,j ∗ Ir+i ,c+i)

G =
√
G 2
x + G 2

y

‘
64 Bit Intel Assembly Language c©2011 Ray Seyfarth

A simple C solution

#include <math.h>

#define matrix(a,b,c) a[(b)*(cols)+(c)]

void sobel(unsigned char *data, float *output, long rows, long cols)

{

int r, c;

int gx, gy;

for (r = 1; r < rows-1; r++) {

for (c = 1; c < cols-1; c++) {

gx = -matrix(data,r-1,c-1) + matrix(data,r-1,c+1) +

-2*matrix(data,r,c-1) + 2*matrix(data,r,c+1) +

-matrix(data,r+1,c-1) + matrix(data,r+1,c+1);

gy = -matrix(data,r-1,c-1) - 2*matrix(data,r-1,c)

- matrix(data,r-1,c+1) +

matrix(data,r+1,c-1) + 2*matrix(data,r+1,c)

+ matrix(data,r+1,c+1);

matrix(output,r,c) = sqrt((float)(gx)*(float)(gx)+

(float)(gy)*(float)(gy));

}

}

}
64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Sobel using SSE instructions

16 8 bit values can be placed in an XMM registers

The central 14 values can be used to compute 14 Sobel results

The code loaded the row r − 1 and computed part of 14 Sobel results

Then it loaded row r and added more to the 14 Sobel results

Last it loaded row r + 1 and added more to the 14 Sobel results

The contributions were added, squared, G 2
x added to G 2

y for 14 G
values

The 14 G values were written to the output image

Using 1000 different images it processed 980 images per second vs
158 for the C code.

This is 6.2 times as fast

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

New instructions used for Sobel

pxor This instruction performs an exclusive or on a 128 XMM
source register or memory and stores the result in the
destination register.

movdqa This instruction moves 128 bits of aligned data from memory
to a register, from a register to memory, or from a register to
a register.

movdqu This instruction moves 128 bits of unaligned data from
memory to a register, from a register to memory, or from a
register to a register.

psrldq This instruction shifts the destination XMM register right the
number of bytes specified in the second immediate operand.

punpcklbw This instruction unpacks the low 8 bytes of 2 XMM registers
and intermingles them. I used this with the second register
holding all 0 bytes to form 8 words in the destination.

punpckhbw This instruction unpacks the upper 8 bytes of 2 XMM
registers and intermingles them.

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

New instructions used for Sobel (2)

paddw This instruction adds 8 16 bit integers from the second
operand to the first operand. At least one of the operands
must be an XMM register and one can be a memory field.

psubw This instruction subtracts the second set of 8 16 bit integers
from the first set.

pmullw This instruction multiplies the first set of 8 16 bit integers
times the second set and store the low order 16 bits of the
products in the first operand.

punpcklwd This instruction unpacks and interleaves words from the
lower halves 2 XMM registers into the destination register.

punpckhwd This instruction unpacks and interleaves words from the
upper halves 2 XMM registers into the destination register.

cvtdq2ps This instruction converts 4 double word integers into 4
double word floating point values.

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

The Sobel assembly code

This code is far too long to examine in slides

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

	Overview
	Sobel in C
	Sobel computed using SSE instructions

