
Using the C Stream I/O Functions

Ray Seyfarth

August 5, 2011

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Why use the C stream I/O functions?

The basic open, lseek, read, write and close system calls work

The C stream I/O library buffers data in your process

If you use read to read 1 billion bytes, there will be 1 billion system
calls

If you read 1 billion bytes using getchar there will be perhaps 1
system call per 8192 bytes

Using getchar can be over 20 times as fast

The operating system uses buffers too - you probably can’t really 1
byte from a disk in one operation

For small sized records, using the stream I/O functions will be faster

You could implement your own specialized buffering system and do
better than the C library, but you’ll pay for the efficiency with time

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Outline

1 Opening a file

2 Using fscanf and fprintf

3 Using fgetc and fputc

4 Using fgets and fputs

5 Using fread and fwrite

6 Using fseek and ftell

7 Closing a file

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Opening a file using fopen

FILE *fopen (char *pathname, char *mode);

pathname is the null-terminated name of the file to open

mode is a string defining how you wish to use the file

r read only mode

r+ read and write

w write only, truncates or creates

w+ read and write, truncates or creates

a write only, appends or creates

a+ read and write, appends or creates

fopen returns an “opaque” FILE pointer (or NULL on error)

A FILE is probably a struct with a file descriptor and a pointer to a
buffer

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Assembly code to open a file using fopen

segment .data

name db "customers.dat",0

mode db "w+",0

fp dq 0

segment .text

global fopen

lea rdi, [name]

lea rsi, [mode]

call fopen

mov [fp], rax

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Using fscanf and fprintf

int fscanf (FILE *fp, char *format, ...);

int fprintf (FILE *fp, char *format, ...);

scanf is a function calling fscanf with stdin as the FILE pointer
(more or less)

The behavior of fscanf is like scanf, except that it reads from any
file

printf is a function calling fprintf with stdout as the FILE

pointer

The behavior of fprintf is like printf, except that it writes to any
file

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Using fgetc and fputc

int fgetc (FILE *fp);

int fputc (int c, FILE *fp);

int ungetc (int c, FILE *fp);

fgetc reads 1 character

It returns EOF which is -1 on end of file or error

fputc writes the character c to a file

It returns c on success or EOF

You can use ungetc to “push back” a character

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Copying data using fgetc and fputc

more mov rdi, [ifp] ; input file pointer

call fgetc

test eax, -1

je done

mov edi, eax

mov rsi, [ofp] ; output file pointer

call fputc

jmp more

done:

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Using fgets and fputs

char *fgets (char *s, int size, FILE *fp);

int fputs (char *s, FILE *fp);

The parameter s is the array to read or write

size is the number of characters in s

fgets will read until it has read a new-line character, or it has filled
s, or it hits end-of-file

The new-line character will be placed in s

No matter what fgets places a null byte (0) at the end of s

fgets returns s on success or NULL on end-of-file or error

fputs writes s to the file

It returns EOF (-1) on error

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Selectively copying lines of text

The code below copies all lines of text which do not start with ’;’

more lea rdi, [s]

mov esi, 200

mov rdx, [ifp]

call fgets

test rax, 0

je done

mov al, [s]

test al, ’;’

je more

lea rdi, [s]

mov rsi, [ofp]

call fputs

jmp more

done:

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Using fread and fwrite

int fread (void *p, int size, int nelts, FILE *fp);

int fwrite (void *p, int size, int nelts, FILE *fp);

The parameter p is the address of a variable or array

size is the size of each element to read or write

nelts is the number of elements to read or write

Both return the number or elements read or written

The return value could be less than nelts or 0

The code below writes 100 Customer objects

mov rdi, [customers] ; allocated array

mov esi, Customer_size

mov edx, 100

mov rcx, [fp]

call fwrite

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Using fseek and ftell

int fseek (FILE *fp, long offset, int whence);

long ftell (FILE *fp);

fseek sets the stream’s position like lseek

ftell returns the current position

If whence is 0, offset is the byte position

If whence is 1, offset is relative to the current position

If whence is 2, offset is relative to the end of file

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Function to write a customer record

write_customer:

.fp equ 0

.c equ 8

push rbp

mov rbp, rsp

sub rsp, 16

mov [rsp+.fp], rdi ; file pointer

mov [rsp+.c], rsi ; save Customer pointer

mul rdx, Customer_size ; record number * size

mov rsi, rdx ; 2nd parameter to ftell

mov rdx, 0 ; whence meaning position

call ftell

mov rdi, [rsp+.c] ; pointer to start writing from

mov rsi, Customer_size ; size of each element

mov rdx, 1 ; write 1 element

mov rcx, [rsp+.fp] ; file pointer

call fwrite

leave

ret
64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Closing a file

int fclose(FILE *fp);

The FILE object has a buffer and may contain data which has not
been written

Failure to close with fclose could result in lost data

The system will close the underlying file, but will not call fclose
automatically when your process ends

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

	Opening a file
	Using fscanf and fprintf
	Using fgetc and fputc
	Using fgets and fputs
	Using fread and fwrite
	Using fseek and ftell
	Closing a file

