
Branching and Looping

Ray Seyfarth

August 10, 2011

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Branching and looping

So far we have only written “straight line” code

Conditional moves helped spice things up

In addition conditional moves kept the pipeline full

But conditional moves are not always faster than branching

But we need loops to process each bit in a register

Repeated code can be faster, but there is a limit

In the next chapter we will work with arrays

Here we will need to process differing amounts of data

Repeated code is too inflexible

We need loops

To handle code structures like if/else we need both conditional and
unconditional branch statements

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Outline

1 Unconditional jump

2 Conditional jump

3 Looping with conditional jumps

4 Loop instructions

5 Repeat string (array) instructions

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Unconditional jump

An unconditional jump is equivalent to a goto

But jumps are necessary in assembly, while high level languages could
exist without goto

The unconditional jump looks like
jmp label

The label can be any label in the program’s text segment

Humans think of parts of the text segment as functions

The computer will let you jump anywhere

You can try to jump to a label in the data segment, which hopefully
will fail

The assembler will generate an instruction register (rip) relative
location to jump

The simplest form uses an 8 bit immediate: -128 to +127 bytes

The next version is 32 bits: plus or minus 2 GB

The short version takes up 2 bytes; the longer version 5 bytes

The assembler figures this out for you

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Unconditional jumps can vary

An unconditional jump can jump to a location specified by a register’s
content or a memory location

You could use a conditional move to hold either of 2 locations in a
register and jump to the proper location

It is simpler to just use a conditional jump

However you can construct an efficient switch statement by
expanding this idea

You need an array of addresses and an index for the array to select
which address to use for the jump

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Unconditional jump used as a switch

segment .data

switch: dq main.case0

dq main.case1

dq main.case2

i: dq 2

segment .text

global main ; tell linker about main

main: mov rax, [i] ; move i to rax

jmp [switch+rax*8] ; switch (i)

.case0:

mov rbx, 100 ; go here if i == 0

jmp .end

.case1:

mov rbx, 101 ; go here if i == 1

jmp .end

.case2:

mov rbx, 102 ; go here if i == 2

.end: xor eax, eax

ret
64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Conditional jump

First you need to execute an instruction which sets some flags

Then you can use a conditional jump

The general pattern is
jCC label

The CC means a condition code

instruction meaning aliases flags

jz jump if zero je ZF=1

jnz jump if not zero jne ZF=0

jg jump if > zero jnle ZF=0, SF=0

jge jump if ≥ zero jnl SF=0

jl jump if < zero jnge js SF=1

jle jump if ≤ zero jng ZF=1 or SF=1

jc jump if carry jb jnae CF=1

jnc jump if not carry jae jnb CF=0

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Simple if statement

if (a < b) {

temp = a;

a = b;

b = temp;

}

mov rax, [a]

mov rbx, [b]

cmp rax, rbx

jge in_order

mov [temp], rax

mov [a], rbx

mov [b], rax

in_order:

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

If statement with an else clause

if (a < b) {

max = b;

} else {

max = a;

}

mov rax, [a]

mov rbx, [b]

cmp rax, rbx

jnl else

mov [max], rbx

jmp endif

else: mov [max], rax

endif:

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Looping with conditional jumps

You could construct any form of loop using conditional jumps

We will model our code after C’s loops

while, do ... while and for

We will also consider break and continue

break and continue can be avoided in C, though sometimes the
result is less clear

The same consideration applies for assembly loops as well

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Counting 1 bits in a quad-word

sum = 0;

i = 0;

while (i < 64) {

sum += data & 1;

data = data >> 1;

i++;

}

There are much faster ways to do this

But this is easy to understand and convert to assembly

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Counting 1 bits in a quad-word in assembly

segment .text

global main

main: mov rax, [data] ; rax holds the data

xor ebx, ebx ; clear since setc will fill in bl

xor ecx, ecx ; i = 0;

xor edx, edx ; sum = 0;

while: cmp rcx, 64 ; while (i < 64) {

jnl end_while ; requires testing on opposite

bt rax, 0 ; data & 1

setc bl ; move result of test to bl

add edx, ebx ; sum += data & 1;

shr rax, 1 ; data = data >> 1;

inc rcx ; i++;

jmp while ; end of the while loop

end_while:

mov [sum], rdx ; save result in memory

xor eax, eax ; return 0 from main

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Code generated by gcc -O3 -S countbit.s

movq data(%rip), %rax

movl $64, %ecx

xorl %edx, %edx

.L2:

movq %rax, %rsi

sarq %rax

andl $1, %esi

addq %rsi, %rdx

subl $1, %ecx

jne .L2

AT&T syntax: operands are reversed and names are more explicit

The compiler counted down from 64

Converted the loop to test at the bottom

Loop has 2 fewer instructions

Is it faster to use movq and andl?

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Learning from the compiler

The compiler writers know the instruction set very well

Most likely movq and andl is faster

Testing would tell if the other method is superior

I also tried the compiler option “-funroll-all-loops”

The compiler added up values for 8 bits in 1 loop iteration

8 bits in a 24 instruction loop vs 1 bit in a six instruction loop

This makes it twice as fast, but the instructions use many different
registers allowing parallel execution in 1 core

Loop unrolling can help a lot with 16 registers

Examining the generated code should mean than you do no worse

Clever reorganization can beat the compiler

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Do-while loops

Strict translation of a while loop uses 2 jumps

It save a jump to the top if you use a do-while loop

do {

statements;

} while (condition);

A do-while loop always executes the loop body at least once

You can always place an if statement around a do-while to make it
behave like a while loop

if (condition) {

do {

statements;

} while (condition);

}

Don’t do this in C - let the compiler do it for you

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Ugly C code to search through an array

i = 0;

c = data[i];

if (c != 0) do {

if (c == x) break;

i++;

c = data[i];

} while (c != 0);

n = c == 0 ? -1 : i;

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Assembly code to search through an array

mov bl, [x] ; value being sought

xor ecx, ecx ; i = 0;

mov al, [data+rcx] ; c = data[i]

cmp al, 0 ; if (c != 0) {

jz end_while ; skip loop for empty string

while:

cmp al, bl ; if (c == x) break;

je found

inc rcx ; i++;

mov al, [data+rcx] ; c = data[i];

cmp al, 0 ; while (c != 0);

jnz while

end_while:

mov rcx, -1 ; If we get here, we failed

found: mov [n], rcx ; Assign either -1 or the

; index where x was found

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Counting loops

for (i = 0; i < n; i++) {

c[i] = a[i] + b[i];

}

mov rdx, [n] ; use rdx for n

xor ecx, ecx ; i (rdx) = 0

for: cmp rcx, rdx ; i < n

je end_for ; get out if equal

mov rax, [a+rcx*8] ; get a[i]

add rax, [b+rcx*8] ; a[i] + b[i]

mov [c+rcx*8], rax ; c[i] = a[i] + b[i];

inc rcx ; i++

jmp for ; too bad, loop has 2 jumps

end_for:

We could use a test before the loop
We could do loop unrolling

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Loop instructions

The CPU has instructions like loop and loopne which designed for
loops

They decrement rcx and do the branch if rcx is not 0

It is faster to use dec and jnz instead

The label must be within -128 to +127 bytes of rip

Probably pointless

mov ecx, [n]

sub ecx, 1

more: cmp [data+rcx],al

loopne more

mov [loc], ecx

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Repeat string (array) instructions

The repeat instruction (rep) works in conjunction with string (array)
instructions

You first set rcx to be the number of repititions

You set rsi to the address of source data

And set rdi to be the address of destination data

Then you use a command like

rep movsb

The previous command would copy an array of bytes

Some string instructions include tests for early termination

The string instructions can also be used without rep

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Store instruction

The stosb instruction stores the byte in al at the address specified
in rdi and increments rdi

If the direction flag is set it decrements rdi

There are also stosw, stosd and stosq to operate 2, 4 and 8 byte
quantities

mov eax, 1

mov ecx, 1000000

lea rdi, [destination]

rep stosd ; place 1000000 1’s in destination

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Store instruction

There are a collection of load string instructions which copy data from
the address pointed at by rsi and increment (or decrement) rsi

Using rep lodsb seems pointless

The code below uses lodsb and optionally stosb to copy none
carriage return characters

lea rsi, [source]

lea rdi, [destination]

mov ecx, 1000000 ; number of iterations

more: lodsb ; get the next byte in al

cmp al, 13 ; if al is not 13 store al

je skip

stosb ; store al in destination

skip: sub ecx, 1 ; count down

jnz more

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Scan instruction

There are a collection of scan string instructions which scan data from
the address pointed at by rsi and increment (or decrement) rsi

They compare data against al, ax, ...

Below is a version of the C strlen function

segment .text

global strlen

strlen: cld ; prepare to increment rdi

mov rcx, -1 ; maximum number of iterations

xor al, al ; will scan for 0

repne scasb ; repeatedly scan for 0

mov rax, -2 ; start at -1, end 1 past the end

sub rax, rcx

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Compare instruction

The compare string instructions compare the data pointed at by rdi

and rsi

The code below implements the C memcmp function

segment .text

global memcmp

memcmp: mov rcx, rdx

repe cmpsb ; compare until end or difference

cmp rcx, 0

jz equal ; reached the end

movzx eax, byte [rdi-1]

movsx ecx, byte [rsi-1]

sub eax, ecx

ret

equal: xor eax, eax

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Setting and clearing the direction flag

The string operations increment their addresses if the direction flag is
0

They decrement their address is the direction flag is 1

Use cld to prepare for increasing addresses

Use std to prepare for decreasing addresses

Functions are expected to leave the direction flag set to 0

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

	Unconditional jump
	Conditional jump
	Looping with conditional jumps
	Loop instructions
	Repeat string (array) instructions

