
Registers

Ray Seyfarth

September 8, 2011

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Outline

1 Register basics

2 Moving a constant into a register

3 Moving a value from memory into a register

4 Moving values from a register into memory

5 Moving data from one register to another

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Register basics

Computer main memory has a latency of about 80 nanoseconds

A 3.3 GHz CPU uses approximately 0.3 nsecs per cycle

Memory latency is about 240 cycles

The Core i7 has 3 levels of cache with different latencies
I Level 3 about 48 nsec latency or about 150 cycles
I Level 2 about 10 nsec latency or about 39 cycles
I Level 1 about 4 nsec latency or about 12 cycles

There is a need for even faster memory

This ultra-fast “memory” is the CPU’s registers

Some register-register instructions complete in 1 cycle

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



x86-64 registers

CPUs running in x86-64 mode have 16 general purpose registers

There are also 16 floating point registers (XMM0-XMM15)

There is also a floating point register stack which we ignore

The general purpose registers hold 64 bits

The floating point registers can be either 128 or 256 bits
I The CPU can use them to do 1 32 bit or 1 64 bit floating point

operation in an instruction
I The CPU can also use these to do packed operations on multiple

integer or floating point values in an instruction
I “Single Instruction Multiple Data” - SIMD

The CPU has a 64 bit instruction pointer register - rip

There is a 64 bit flags register, rflags, holding status values like
whether the last comparison was positive, zero or negative

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



General purpose registers

These registers evolved from 16 bit CPUs to 32 bit mode and finally
64 bit mode

Each advance has maintained compatibility with the old instructions

The old register names still work

The old collection was 8 registers which were not entirely general
purpose

The 64 bit collection added 8 completely general purpose 64 bit
registers named r8 - r15

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



The 64 bit registers evolved from the original 8

Software uses the “r” names for 64 bit use, the “e” names for 32 bit
use and the original names for 16 bit use

rax - general purpose, accumulator
I rax uses all 64 bits
I eax uses the low 32 bits
I ax uses the low 16 bits

rbx, ebx, bx - general purpose

rcx, ecx, cx - general purpose, count register

rdx, edx, dx - general purpose

rdi, edi, di - general purpose, destination index

rsi, esi, si - general purpose, source index

rbp, ebp, bp - general purpose, stack frame base pointer

rsp, esp, sp - stack pointer, rsp is used to push and pop

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



The original 8 registers as bytes

Kept from the 16 bit mode
I al is the low byte of ax, ah is the high byte
I bx can be used as bl and bh
I cx can be used as cl and ch
I dx can be used as dl and dh

New to x86-64
I dil for low byte of rdi
I sil for low byte of rsi
I bpl for low byte of rbp (probably useless)
I spl for low byte of rsp (probably useless)

There is no special way to access any “higher” bytes of registers

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



The 8 new general purpose registers as smaller registers

Here the naming convention changes

Appending “d” to a register accesses its low double word - r8d

Appending “w” to a register accesses its low word - r12w

Appending “b” to a register accesses its low byte - r15b

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Moving a constant into a register

Moving is fundamental

yasm uses the mnemonic mov for all sorts of moves

The code from gcc uses mnemonics like movq

Most instructions use 1, 2 or 4 byte immediate fields

mov can use an 8 byte immediate value

mov rax, 0x0123456789abcdef ; can move 8 byte immediates

mov rax, 0

mov eax, 0 ; the upper half is set to 0

mov r8w, 16 ; affects only low word

Time to try some movs using gdb

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Moving a value from memory into a register

segment .data

a dq 175

b dq 4097

c db 1, 2, 3, 4

d dd 0xffffffff

segment .code

mov rax, a

mov rbx, [a]

mov rcx, [c]

mov edx, [c]

Using simply a places the address of a into rax

Using [a] places the value of a into rbx

mov rcx, [c] makes rcx = 0xffffffff04030201

mov edx, [c] makes rdx = 0x04030201

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Moving a value from memory into a register (2)

The from memory mov instruction has a 32 bit immediate field

This is where the address is placed

This means using addresses greater than 4 GB requires getting the
address into a register rather than using the immediate field

There is a special 64 bit form, but generally you will not have a 64 bit
immediate address

The register name defines the number of bytes moved

mov rax, a is really a “move constant” instruction

mov rax, [a] is a “move from memory” instruction

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



A program to add 2 numbers from memory

segment .data

a dq 175

b dq 4097

segment .text

global main

main:

mov rax, [a] ; mov a into rax

add rax, [b] ; add b to rax

xor eax, eax

ret

Time to try this with gdb

You will see that gdb thinks variables are double word integers

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Move with sign extend or zero extend

If you move a double word into a double word register, the upper half
is zeroed out

If you move a 32 bit immediate into a 64 bit register it is zero
extended

If you add a 32 bit immediate to a 64 bit register it is sign extended
before adding

Sometimes you might wish to load a smaller value from memory and
fill the rest of the register with zeroes

Or you may wish to sign extend a small value from memory

For movsx and movzx you need a size qualifier for the memory
operand

movsx rax, byte [data] ; move byte, sign extend

movzx rbx, word [sum] ; move word, zero extend

movsx rcx, dword [count] ; move dword, sign extend

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Moving values from a register into memory

Simply use the memory reference as the first operand

mov [a], rax ; move a quad word to a

mov [b], ebx ; move a double word to b

mov [c], r8w ; move a word to c

mov [d], r15b ; move a byte to d

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Moving data from one register to another

Use 2 register operands

mov rax, rbx ; move rbx to rax

mov eax, ecx ; move ecx to eax, zero filled

mov cl, al ; move al to cl, leave rest of

; unchanged

64 Bit Intel Assembly Language c©2011 Ray Seyfarth


	Register basics
	Moving a constant into a register
	Moving a value from memory into a register
	Moving values from a register into memory
	Moving data from one register to another

