Numbers

Ray Seyfarth

August 31, 2011

64 Bit Intel Assembly Language

©2011 Ray Seyfarth

Outline

Binary numbers

2 Hexadecimal numbers

Integers

- 4 Floating point numbers
- 5 Converting decimal numbers to floats
- 6 Floating point mathematics

Binary numbers

• Decimal place value system

$$15301201 = 1 * 10^{7} + 5 * 10^{6} + 3 * 10^{5} + 10^{3} + 2 * 10^{2} + 1$$

= 10000000 + 5000000 + 300000 + 1000 + 200 + 1
= 15301201

• Binary place value system

$$10101111 = 2^7 + 2^5 + 2^3 + 2^2 + 2 + 1$$

= 128 + 32 + 8 + 4 + 2 + 1
= 175

- The least significant bit of a byte is bit 0
- The most significant bit is bit 7
- In yasm this number could be written as 10101111b

Decimal to binary conversion

- Convert 741 to binary
- Repeatedly divide by 2 and keep the remainders

division		remainder	bits	
741/2	=	370	1	1
370/2	=	185	0	01
185/2	=	92	1	101
92/2	=	46	0	0101
46/2	=	23	0	00101
23/2	=	11	1	100101
11/2	=	5	1	1100101
5/2	=	2	1	11100101
2/2	=	1	0	011100101
1/2	=	0	1	1011100101

Hexadecimal numbers

- Base 16 numbers
- Use as "digits" 0-9 and A-F (or a-f)
- A=10, B=11, C=12, D=13, E=14, F=15

$$0x2b1a = 2 * 163 + 11 * 162 + 1 * 16 + 10$$

= 2 * 4096 + 11 * 256 + 16 + 10
= 8192 + 2816 + 16 + 10
= 11034

- Each hexadecimal digit or "nibble" is 4 bits
- 0x2b1a = 0010 1011 0001 1010
- 0x2b1a = 0010101100011010b
- Counting 32 bits for a binary pattern would be hard
- Hexadecimal is much easier
- Oxdeadbeef = 11011110101011011011111011101111b

- Convert 40007 to hexadecimal
- Repeatedly divide by 16 and keep the remainders

divis	sion	remainder	hex	
40007/16	=	2500	7	7
2500/16	=	156	4	47
156/16	=	9	12	c47
9/16	=	0	9	9c47

- Integers can be 1, 2, 4 or 8 bytes long
- They can be signed or unsigned

Variety	Bits	Bytes	Minimum	Maximum
unsigned	8	1	0	255
signed	8	1	-128	127
unsigned	16	2	0	65535
signed	16	2	-32768	32767
unsigned	32	4	0	4294967295
signed	32	4	-2147483648	2147483647
unsigned	64	8	0	18446744073709551615
signed	64	8	-9223372036854775808	9223372036854775807

- We use the highest-order bit as a sign bit
- 1 for a sign bit means a negative number
- If we stored -1 as 1000001b
- -1 + 1 would be 10000001b + 00000001b = 100000010b
- Then addition would yield -1 + 1 = -2
- There must be a better way to store negatives
- Hopefully, we can use the same circuitry for positives and negatives

Two's complement integers

- To convert a number to its negative, use two's complement
- Flip all the bits
- Add 1
- Let's convert 1 to -1 with 8 bit numbers

```
00000001 for the absolute value
11111110 for the complement
11111111 after adding 1 to the complement
-1 = 11111111
```

Two's complement negative numbers work for addition

More 8 bit signed integers

• They form a cycle if you keep adding 1

00000000	=	0
0000001	=	1
0000010	=	2
01111111	=	127
1000000	=	-128
1000001	=	-127
10000010	=	-126
11111110	=	-2
11111111	=	-1
00000000	=	0

Addition

- Let's convert and add -29124 + 125
 - 29124 = 0111000111000100 Negate = 1000111000111011 Add 1 = 1000111000111100
 - 125 = 000000001111101
 - Now add 1000111000111100 000000001111101

1000111010111001

Negate 0111000101000110 Add 1 0111000101000111 28999

So -29124 + 125 = -28999

Binary multiplication

	1010101
*	10101
	1010101
	1010101
	1010101
	11011111001

Floating point numbers

- 32 bit, 64 bit and 80 bit numbers
- Stored in IEEE 754 format

Variety	Bits	Exponent	Exponent Bias	Fraction	Precision
float	32	8	127	23	${\sim}7$ digits
double	64	11	1023	52	${\sim}16$ digits
long double	80	15	16383	64	19 digits

- Exponents are binary exponents
- An exponent field has the bias added
- A 32 bit exponent field of 128 means a binary exponent 1
- A 32 bit exponent field of 125 means a binary exponent -2
- 0.0 is stored as all bits equal to 0
- Exponent field 255 means "Not a Number"

Binary numbers with binary points

$$\begin{array}{l} 0.1_2 = 2^{-1} \\ = 0.5 \\ 1.11_2 = 1 + 2^{-1} + 2^{-2} \\ = 1 + 0.5 + 0.25 \\ = 1.75 \\ 1001.1001_2 = 2^3 + 1 + 2^{-1} + 2^{-4} \\ = 8 + 1 + 0.5 + 0.0625 \\ = 9.5625 \\ 1.0010101 * 2^3 = 1001.0101 \\ = 2^3 + 1 + 2^{-2} + 2^{-4} \\ = 8 + 1 + 0.25 + 0.0625 \\ = 9.3125 \end{array}$$

- Normalized floats have exponent fields from 1 to 254
- For these floats there will be at least one 1 bit in the number
- IEEE 754 uses implicit 1 bits
- For non-zero floats, they can be written in "scientific" notation
 - $\bullet \ 1011.10101 = 1.01110101 * 2^3$
 - The leading 1 bit is not stored
- So we have 23 bits of fraction with 1 implicit bit = 24 bits
- The sign bit is flipped to negate a float (1 means negative)

Floating point storage

• Consider consider this listing by yasm

1			
2			
3	00000000	00000000	
4	0000004	0000803F	
5	80000008	000080BF	
6	000000C	0000E03F	
7	0000010	0000F542	
8	0000014	CDCC8C3F	
9	0000018	F9021550	

%line 1+1 fp.asm
[section .data]
zero dd 0.0
one dd 1.0
neg1 dd -1.0
a dd 1.75
b dd 122.5
d dd 1.1
e dd 1000000000.0

- The bytes are backwards
- 1.0 should be represented logically as 3F800000
- 0 sign bit, 127 exponent field, 0 for the fraction field

Floating point storage (2)

- 4 0000004 0000803F
- 5 0000008 000080BF
- 6 000000C 0000E03F
- 7 0000010 0000F542

one dd 1.0 neg1 dd -1.0 a dd 1.75 b dd 122.5

- All these have a lot of 0 bits in the fractions
- They are all exactly equal to a sum of a few powers of 2
- $1 = 2^0$
- $1.75 = 2^0 + 2^{-1} + 2^{-2}$
- $122.5 = 2^6 + 2^5 + 2^4 + 2^3 + 2^1 + 2^{-1}$
- -1.0 differs from 1.0 only in the sign bit

8 00000014 CDCC8C3F

d dd 1.1

- 1.1 is a repeating binary number
- The number in "proper" order is 3F8CCCCD
- The exponent field is 127, so the exponent is 1
- The number is 1.000110011001100110012
- It looks like $1.1 = 1.000\overline{1100}$

Converting decimal numbers to floats

- Determine the sign bit and work with the absolute value
- Convert the whole part of the decimal number
- Convert the fraction
- Express in binary scientific notation
- Build the exponent field by adding 127 bias
- Drop the leading 1 to get the fraction field
- Example: convert -12.25
 - Sign bit is 1
 - ▶ Whole part is 12 = 1100₂
 - Fraction is 0.25 = 0.01
 - Scientific notation 12.25 = 1.10001₂ * 2³

$$= 0xC1440000$$

Converting decimal number to float (2)

- The only non-obvious step is coverting the fractional part to a binary fraction.
- Suppose you have a decimal number x = .abcdefgh
- Then if you multiple x by 2, the only possible result is 2x < 1 or $1 \le 2x < 2$
- If 2x < 1, then x < 0.5, which means the first bit after the binary point is 0.
- If $2x \ge 1$, then $x \ge 0.5$, which means the first bit after the binary point is 1.
- So we set the first bit and work on the remaining fractional part of 2x to get the next bit.
- This process continues until we reach x = 0 or we have enough bits.

Converting decimal number to float (3)

- Let's convert -121.6875 to a binary number
- First the sign is 0
- 121 = 1111001₂
- Now it's time to work on .6875

Multiply		Result	Binary
.6875 * 2	=	1.375	.1 ₂
.375 * 2	=	0.75	.102
.75 * 2	=	1.5	.1012
.5 * 2	=	1.0	.10112

- $-121.6875 = -1111001.1011_2$
- $-121.6875 = -1.1110011011_2 * 2^6$
- As a binary float 1 10000101 11100110110000000000000
- Expressed in hexadecimal: 0xC2F36000

Floating point addition

- Let's add 41.275 and 0.315
- 41.275 = 101001.010001100110011010 in binary
- 0.325 = 0.0101000010100011110101110 in binary
- As with decimals, we align the numbers and add

101001.010001100110011010

+ 0.0101000010100011110101110

101001.1001011100001010010101110

- There are 31 digits in the answer
- The answer must be rounded to 24 bits
- Rounding the last 7 bits means truncation in this case
- We get 0x42265c29 which is 41.59 (approximately)

• Let's multiply 7.5 and 4.375

7.5	=	111.1 ₂
4.375	=	100.011 ₂
		1111 ₂
		11110 ₂
		111100000 ₂
		100000.1101 ₂

• Conversion to float format should be apparent by now