
High Performance Assembly Programming

Ray Seyfarth

June 29, 2012

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Outline

1 Optimizations common to C/C++ and assembly

2 Optimizations the compiler can do in C, but you only in assembly

3 For assembly only

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Use a better algorithm

A highly efficient insertion sort is still O(n2)

Using qsort from C is generally faster

Using the C++ STL sort is faster still

A hash table is O(1) for lookup

In you need an ordered dictionary, perhaps the STL map is best

Tuning an O(n2) algorithm in assembly will not convert it to O(n lg n)

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Use C or C++

An optimizing compiler will implement nearly all of the general
optimizations

It will do them tirelessly, missing nearly nothing

Most of a program is not time-critical

Perhaps 10% of a program is worth optimizing

You must usually find a non-obvious technique to get better
performance than the compiler

Use the -S option to get an assembly listing

Learn the compiler’s tricks

Perhaps you can do the compiler’s tricks better

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Efficient use of cache

The CPU operates at about 3 GHz
Main memory can provide perhaps 7 bytes per machine cycle
Cache is much faster than main memory
Organize your algorithm to work on data in blocks which fit in cache
The plot below shows time versus array size for computing 10 billion
exclusive or operations

10000 1e+05 1e+06 1e+07 1e+08 1e+09 1e+10
Array Size in Bytes

0

1

2

3

4

5

6

S
ec

o
n
d
s

to
 p

ro
ce

ss
 8

0
 G

B

Time to Compute XOR

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Efficient use of cache(2)

The plot below illustrates a dramatic performance gain through better
use of cache

The task was to compute a 1024 × 1024 matrix multiplication

The code was written in C using 6 nested loops

The 3 inner-most loops multiplied one block by another

0 500 1000
Block size

0

500

1000

1500

2000

M
F

L
O

P
S

1024x1024 Matrix Multiplication

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Common sub-expression elimination

The compiler will probably do this better than you

You can examine its generated code and perhaps notice something
you have overlooked

I would bet my money of the compiler with this trick

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Strength reduction

This refers to using a simpler mathematical technique

Dividing an integer by 8 could be a shift right 3 bits

Getting a remainder after division by 1024, can be done using and

Rather than using pow(x,3) use x*x*x

Computer x4 by computing x2 and then squaring that

Avoid division by a floating point number x , but computing 1/x and
use multiplication instead

Again the compiler will do this tirelessly

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Use registers efficiently

The compiler will do this automatically

Place commonly-used values in registers

If you unroll a loop, use different registers to allow parallel execution
of parts of your computation

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Use fewer branches

Branches interrupt the instruction pipeline

The compiler will frequently re-order blocks of code to reduce
branches

Study the compiler’s generated code

Use conditional moves for simple computations

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Convert loops to branch at the bottom

The compiler generally does this to reduce the number of instructions
in a loop and, especially, the number of branches
Here is a C for loop

for (i = 0; i < n; i++) {

x[i] = a[i] + b[i];

}

By adding an if at the start you can loop with a branch at the bottom
Don’t do this in C. The compiler will handle this.

if (n > 0) {

i = 0;

do {

x[i] = a[i] + b[i];

i++;

} while (i < n);

}

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Unroll loops

Use -funroll-all-loops to have gcc unroll loops

Unrolling means repeated occurrences of the loop body with multiple
parts of the data being processed

Try to make each unrolling use different registers to reduce
instruction dependence

This frees up the CPU to do out-of-order execution

It can do more pipelining and more parallel execution

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Assembly code adding numbers in an array, unrolled

The addition is done as 4 sub-sums which are added later

The four unrolled parts accumulate into 4 different registers

.add_words:

add rax, [rdi]

add rbx, [rdi+8]

add rcx, [rdi+16]

add rdx, [rdi+16]

add rdi, 32

sub rsi, 4

jg .add_words

add rcx, rdx

add rax, rbx

add rax, rcx

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Merge loops

If 2 loops have some loop limits, consider merging the bodies

There will be less loop overhead

The following 2 loops can be profitably merged

for (i = 0; i < 1000; i++) a[i] = b[i] + c[i];

for (j = 0; j < 1000; j++) d[j] = b[j] - c[j];

After merging values for b[i] and c[i] can be used twice

for (i = 0; i < 1000; i++) {

a[i] = b[i] + c[i];

d[i] = b[i] - c[i];

}

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Split loops

Didn’t I just suggest merging loops?

Sometimes the data is unrelated and merging doesn’t help

Perhaps splitting uses cache better

Test your code

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Interchange loops

for (j = 0; j < n; j++) {

for (i = 0; i < n; i++) {

x[i][j] = 0;

}

}

The previous loop steps through the x array in large increments

The loop below steps through the array one element after the other

Cache fetches are better used

for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {

x[i][j] = 0;

}

}

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Move loop-invariant code outside the loop

You can do this in C, but the compiler will do it for you

The assembler does not move loop-invariant code

Again, study the generated code

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Remove recursion

Eliminating tail-recursion is generally useful

If you have to simulate a “stack” like recursion gives you, recursion
will probably be faster

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Eliminate stack frames

Use -fomit-frame-pointers with gcc

Use this for debugged code

Using the rbp register is optional

Leaf functions don’t even need to worry about stack alignment

Unless you are using some local data requiring 16 byte alignment

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Inline functions

The compiler can do this painlessly

In assembly you will make your code less readable

Explore using macros

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Reduce dependencies to allow super-scalar execution

Use different registers to try to reduce dependencies

The CPU has multiple computational units in 1 core

You can benefit from out-of-order execution

You can get more out of pipelines

You can keep more computational units busy

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Use specialized instructions

The compiler will have a harder time doing this than you

There are SIMD integer instructions

There are also SIMD floating point instructions

The AVX instructions are a new feature which allow twice as many
floating point values in the SIMD registers

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

	Optimizations common to C/C++ and assembly
	Optimizations the compiler can do in C, but you only in assembly
	For assembly only

