
Structs

Ray Seyfarth

June 29, 2012

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Structs in C

A struct is a compound object

struct Customer {

int id;

char name[64];

char address[64];

int balance;

};

We can allocate a Customer if we know the size

mov rdi, 136 ; size of a Customer

call malloc

mov [c], rax ; save the address

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Filling in a C struct

We can fill in the parts given their offsets

mov [rax], dword 7 ; set the id

lea rdi, [rax+4] ; name field

lea rsi, [name] ; name to copy to struct

call strcpy

mov rax, [c]

lea rdi, [rax+68] ; address field

lea rsi, [address] ; address to copy

call strcpy

mov rax, [c]

mov edx, [balance]

mov [rax+132], edx

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Assembly struct

Using the yasm struc pseudo-op we can define a Customer

struc Customer

id resd 1

name resb 64

address resb 64

balance resd 1

endstruc

id, name, address and balance are globals

You could not have id in 2 structs

It’s almost the same as doing 4 equates

The size is Customer size

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Assembly struct

One alternative is to prefix field names with dots

struc Customer

.id resd 1

.name resb 64

.address resb 64

.balance resd 1

endstruc

Then you would have to use Customer.id

Another alternative is to use an abbreviated prefix

struc Customer

c_id resd 1

c_name resb 64

c_address resb 64

c_balance resd 1

endstruc

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Program to allocate and fill a struct - data segment

segment .data

name db "Calvin", 0

address db "12 Mockingbird Lane",0

balance dd 12500

struc Customer

c_id resd 1

c_name resb 64

c_address resb 64

c_balance resd 1

endstruc

c dq 0 ; to hold a Customer pointer

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Program to allocate and fill a struct - part of text segment

mov rdi, Customer_size

call malloc

mov [c], rax ; save the pointer

mov [rax+c_id], dword 7

lea rdi, [rax+c_name]

lea rsi, [name]

call strcpy

mov rax, [c] ; restore the pointer

lea rdi, [rax+c_address]

lea rsi, [address]

call strcpy

mov rax, [c] ; restore the pointer

mov edx, [balance]

mov [rax+c_balance], edx

xor eax, eax

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Alignment problems

Suppose you increase the size of the c address array to 65
C would make the offset of balance be 136
yasm would define the offset as 133
The goal is to be C compatible
Also C would have sizeof(Customer) as 140
Customer size would be 137
C aligns each field and makes the size of a struct appropriate for
aligning each data item properly if we allocate an array of structs
We need to use align in the struct

struc Customer

c_id resd 1

c_name resb 64

c_address resb 65

align 4

c_balance resd 1

endstruc

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Allocating a slightly more complex array of customers

segment .data

struc Customer

c_id resd 1 ; 4 bytes

c_name resb 65 ; 69 bytes

c_address resb 65 ; 134 bytes

align 4 ; aligns to 136

c_balance resd 1 ; 140 bytes

c_rank resb 1 ; 141 bytes

align 4 ; aligns to 144

endstruc

customers dq 0

segment .text

mov edi, 100 ; for 100 structs

mul edi, Customer_size

call malloc

mov [customers], rax

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Printing an array of customers

segment .data

format db "%s %s %d",0x0a,0

segment .text

push r15

push r14

mov r15, 100 ; counter saved through calls

mov r14, [customers]; pointer saved through calls

more lea edi, [format]

lea esi, [r14+c_name]

lea rdx, [r14+c_address]

mov rcx. [r14+c_balance]

call printf

add r14, Customer_size

sub r15, 1

jnz more

pop r14

pop r15

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth


