
System Calls

Ray Seyfarth

June 29, 2012

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

System calls

A system call is a special function call which changes the CPU’s
privilege level to enable more capabilities

A user process cannot do privileged instructions
I No in or out instructions
I No changing of CPU mapping registers

Instead a user process makes a system call

The system call is a part of the kernel of the operating system

It verifies that the user should be allowed to do the requested action
and then does the action

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Outline

1 32 bit system calls

2 64 bit system calls

3 C wrapper functions

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

32 bit Linux system calls

Each system call is identified by an integer defined in
“/usr/include/asm/unistd 32.h”
The system call number is placed in eax

Parameters are placed in registers ebx, ecx, edx, esi, edi, and ebp

Process uses the software interrupt number 0x80 to make the system
call
Return value in eax

segment .data

hello: db "Hello world!",0x0a

segment .text

...

mov eax, 4 ; syscall 4 is write

mov ebx, 1 ; file descriptor

lea ecx, [hello] ; array to write

mov rdx, 13 ; write 13 bytes

int 0x80

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

64 bit Linux system calls

System call number defined in “/usr/include/asm/unistd 64.h”
System call number is placed in rax

Parameters rdi, rsi, rdx, r10, r8 and r9.
Process uses syscall instruction
Return value in rax.

segment .data

hello: db "Hello world!",0x0a

segment .text

global _start

_start: mov eax, 1 ; syscall 1 is write

mov edi, 1 ; file descriptor

lea rsi, [hello] ; array to write

mov edx, 13 ; write 13 bytes

syscall

mov eax, 60 ; syscall 60 is exit

xor edi, edi ; exit(0)

syscall

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

C wrapper functions

Every system call is available through a C “wrapper function”
A wrapper function might do very little other than shuffle registers
Some wrappers offer a little extra convenience
Wrapper functions are described in section 2 of the on-line manual

I Use “man 2 write” to learn about the write system call

segment .data

msg: db "Hello World!",0x0a ; String to print

len: equ $-msg ; Length of the string

segment .text

global main

extern write, exit

main:

mov edx, len ; Arg 3 is the length

mov rsi, msg ; Arg 2 is the array

mov edi, 1 ; Arg 1 is the fd

call write

xor edi, edi ; 0 return = success

call exit
64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Open system call

int open (char *pathname, int flags [, int mode]);

pathname is a null-terminated string

flags is a collection of options or’ed together

mode is the permissions to grant if a file is created

flags meaning

0 read-only

1 write-only

2 read and write

0x40 create if needed

0x200 truncate the file

0x400 append

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Permissions for files

There are 3 basic permissions: read, write and execute

There are 3 categories of users: user (owner), group and other

Each of the 3 categories gets a 0 or 1 for each basic permission

Octal works well for permissions

640o is an octal number granting read and write permission to the
user, read permission to the group and no permission to others

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Code to open a file

Open system call returns a small non-negative integer identifying the
opened file

It returns -1 on error and sets errno

segment .data

fd: dd 0

name: db "sample",0

segment .text

extern open

lea rdi, [name] ; pathname

mov esi, 42 ; read-write | create

mov rdx, 600o ; read-write for me

call open

test eax, 0

jz error ; failed to open

mov [fd], eax

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Read and write system calls

int read (int fd, void *data, long count);

int write (int fd, void *data, long count);

fd is the file descriptor returned by open

data is a pointer to some memory to send or receive data

count is the number of bytes to read or write

The data can be any type

These functions return the number of bytes read or written

read returns 0 on end-of-file

They both return -1 on errors and set errno

Use perror to print a text description based on errno

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Lseek system call

long lseek (int fd, long offset, int whence);

offset is a byte offset from whence

If whence is 0, offset is the byte position

If whence is 1, offset is relative to the current position

If whence is 2, offset id relative to the end of the file

lseek returns the current position

Using whence = 2 and offset = 0, lseek returns the file size

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

Reading an entire file

mov edi, [fd]

xor esi, esi ; set offset to 0

mov edx, 2 ; set whence to 2

call lseek ; determine file size

mov [size], rax

mov edi, rax

call malloc ; allocate an array for the file

mov [data], rax

mov edi, [fd]

xor esi, esi ; set offset to 0

xor edx, edx ; set whence to 0

call lseek ; seek to start of file

mov edi, [fd]

mov esi, [data]

mov edx, [size]

call read ; read the entire file

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

The close system call

int close (int fd);

You should make a habit of closing files when no longer needed

They will be closed when the process ends

No data is buffered in the user process, so data written to unclosed
files will be written

Closing will reduce overhead in the kernel

There is a per-process limit on open files

Use “ulimit -a” to see your limits

64 Bit Intel Assembly Language c©2011 Ray Seyfarth

	32 bit system calls
	64 bit system calls
	C wrapper functions

