
Computer Memory

Ray Seyfarth

June 29, 2012

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Outline

1 Memory mapping

2 Process memory model in Linux

3 Memory example

4 Examining memory with gdb

5 Examining memory with ebe

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Memory mapping

Computer memory is an array of bytes from 0 to n − 1 where n is the
memory size

Programs perceive “logical” addresses which are mapped to physical
addresses

2 people can run a program starting at logical address 0x4004c8

while using different physical memory

CPU translates logical addresses to physical during instruction
execution

The CPU translation can be just as fast as if the software used
physical addresses

The x86-64 CPUs can map pages of sizes 4096 bytes and 2 megabytes

Linux uses 2 MB pages for the kernel and 4 KB pages for programs

Some recent CPUs support 1 GB pages

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Translating an address

Suppose an instruction references address 0x43215628

With 4 KB pages, the rightmost 12 bits are an offset into a page

With 0x43215628 the page offset is 0x628

The page number is 0x43215

Let’s assume that the computer is set up to translate page 0x43215

to physical addresses 0x7893000 - 0x7893fff

Then address 0x43215628 is mapped to 0x7893628

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Benefits of memory mapping

User processes are protected from each other
I Your vi process can’t read my vi’s data
I Your process can’t write my data

The operating system is protected from malicious or errant code

It is easy for the operating system to give processes contiguous
chunks of “logical” memory

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Why study memory mapping?

If you write programs, the mapping is automatic

We will not discuss instructions for changing mapping tables

So what difference does it make?

It helps explain page faults
I Suppose you allocate an array of 256 bytes at logical address

0x45678200
I Then all addresses from 0x45678000 to 0x45678fff are valid
I You can go well past the end of the array before you can get a

segmentation violation

Knowledge is power!

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Process memory model in Linux

A Linux process has 4 logical segments
I text: machine instructions
I data: static data initialized when the program

starts
I heap: data allocated by malloc or new
I stack: run-time stack

F return addresses
F some function parameters
F local variables for functions
F space for temporaries

In reality it is more complex

131TB is 47 bits of all 1’s

CPU could use 48 bit logical addresses

Canonical addresses propagate bit 47 through
48-63 so Linux chose to use 47 bits to avoid the
top stack address from appearing huge

0

131TB

data

text

heap

stack

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Memory segments

The text segment is named .text in yasm
I start and main are not actually at 0
I The text segment does not need to grow, so the data segment can be

placed immediately after it

The data segment is in 2 parts
I .data which contains initialized data
I .bss which contains reserved data (initialized to 0)
I “bss” stands for “Block Started by Symbol”

The heap and the stack both need to grow
I The heap grows up
I The stack grows down
I They meet in the middle and explode

Use of heap and stack space in assembly does not involve using a
named segment

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Stack segment limits

The stack segment is limited by the Linux kernel

The typical size is 16 MB for 64 bit Linux

This can be inspected using “ulimit -a”

16 MB seems fairly small, but it is fine until you start using large
arrays as local variables in functions

The stack address range is 0x7fffff000000 to 0x7fffffffffff

A fault to addresses in this range are recognized by the kernel to
allow the stack to grow as needed

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



A few adjustments to the memory model

It appears that the text segment starts at 0x400000 not 0

Shared libraries map code and data into lots of addresses

You can map shared memory regions into your programs

Use “cat /proc/$$/maps” to see your shell’s map
I $$ is the shell’s process id

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Memory example source code

segment .data

a dd 4

b dd 4.4

c times 10 dd 0

d dw 1, 2

e db 0xfb

f db "hello world", 0

segment .bss

g resd 1

h resd 10

i resb 100

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Memory example source code (2)

segment .text

global main ; let the linker know about main

main:

push rbp ; set up a stack frame for main

mov rbp, rsp ; set rbp to point to the stack frame

sub rsp, 16 ; leave some room for local variables

; leave rsp on a 16 byte boundary

xor eax, eax ; set rax to 0 for return value

leave ; undo the stack frame manipulations

ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Memory example listing file

1 %line 1+1 memory.asm

2 [section .data]

3 00000000 04000000 a dd 4

4 00000004 CDCC8C40 b dd 4.4

5 00000008 00000000<rept> c times 10 dd 0

6 00000030 01000200 d dw 1, 2

7 00000034 FB e db 0xfb

8 00000035 68656C6C6F20776F72- f db "hello world", 0

9 00000035 6C6400

Addresses are relative to start of .data in this file

Notice that the 4 byte of 4 is at address 0 (backwards)

b = 0x408ccccd = 0 10000001 00011001100110011001101

Sign bit is 0, exponent field is 0x81 = 129, exponent = 2

Fraction is 1.00011001100110011001101

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Memory example listing file (2)

11 [section .bss]

12 00000000 <gap> g resd 1

13 00000004 <gap> h resd 10

14 0000002C <gap> i resb 100

Notice that the addresses start again at 0

The commands reserve space

resd 1 reserves 1 double word or 4 bytes

resd 10 reserves 10 double words or 40 bytes

resb 100 reserves 100 bytes

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Memory example listing file (3)

16 [section .text]

17 [global main]

18 main:

19 00000000 55 push rbp

20 00000001 4889E5 mov rbp, rsp

21 00000004 4883EC10 sub rsp, 16

22 00000008 31C0 xor eax, eax

23 0000000A C9 leave

24 0000000B C3 ret

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Examining memory with gdb

Time to try some commands in gdb

Use p for print
I Print allows printing expressions
I p/d for decimal
I try format options t, u, i, c, s, f, a and x

Examine requires a memory address
I x/NFS
I N is an optional count
I F is a format like print
I S is a size character: b=1, h=2, w=4, g=8

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Examining memory with ebe

Run program to a breakpoint

Control-right-click on a variable name

Fill in popup form
I Variable name
I Address - will the &variable
I Format

F floating point
F decimal
F hexadecimal
F character
F string
F string array (like argv in main)

I Size: 1, 2, 4 or 8 bytes
I First and last indices

Variable will be monitored in data window

64 Bit Intel Assembly Language c©2011 Ray Seyfarth


	Memory mapping
	Process memory model in Linux
	Memory example
	Examining memory with gdb
	Examining memory with ebe

