
Introduction to 64 Bit Intel Assembly Language
Programming

Ray Seyfarth

June 29, 2012

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Outline

1 Goals for this course

2 Why study assembly language?

3 What is a computer?

4 Machine language

5 Assembly language

6 Assembling and linking

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Goals for this course

Learn internal data formats

Learn basic 64 bit Intel/AMD instructions

Write pure assembly programs

Write mixed C and assembly programs

Use the gdb debugger

Floating point instructions

Arrays

Functions

Structs

Data structures

Using system calls and C libraries

SSE and AVX instructions

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Problems with assembly language

Assembly is the poster child for non-portability
I Different CPU = different assembly
I Different OS = different function ABI
I Intel/AMD CPUs operate in 16, 32 and 64 bit modes

Difficult to program
I More time = more money
I Less reliable
I Difficult to maintain

Syntax does not resemble mathematics

No syntactic protection
I No structured ifs, loops

No typed variables
I Can use a pointer as a floating point number
I Can load a 4 byte integer from a double variable

Variable access is roughly like using pointers

Language is not orthogonal

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



What’s good about assembly language?

Assembly language is fast
I Optimizing C/C++ compilers can be faster
I You need to dissect an algorithm and rearrange it to use a special

feature that the compiler can’t figure out
I Generally you must use a special instructions
I There are over 1000 instructions
I Still it can be faster

Assembly programs are small
I But memory is cheap and plentiful
I C/C++ compilers can optimize for size
I Compilers can re-order code sections to reduce size

Assembly can do things not possible in C/C++
I I/O instructions
I Manage memory mapping registers
I Manipulate other internal control registers

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



What’s good about assembly for ordinary mortals?

Explains how the computer works

Numbers are stored in registers

Arithmetic is done with registers

C function register and stack usage defined

Stack frames are used by debuggers

Optimization techniques are explained

Computer bugs are more immediately related to machine instructions
and limitations
You will learn how the compiler implements

I if/else statements
I loops
I functions
I structures
I arrays
I recursion

Your C/C++ coding will improve

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



What is a computer?

A machine to process bits
I We consider the bits to mean things
I True or false
I Integers
I Floating point numbers
I Characters and strings
I User-created types

F Physical objects, animals, plants, minerals
F Lists of things
F Stacks of things
F Queues of things
F Priority queues of things
F Trees of various types
F Hash tables

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Bytes

Memory is organized as 8 bit bytes

First byte of memory is at address 0

Second byte is at address 1

Memory is an array of bytes

Consider the byte with bits 01010101
I Considered as a decimal number it is 85
I In the right context it can be a machine instruction

F Push the rbp register onto the run-time stack

I Considered as a character is it ’U’
I It could be part of the string “Undefined”
I It could be part of a larger number, like 85*256+17 = 21777
I It could be part if an address in the computer

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Program execution

The 12 bytes to the right constitute
a program which if placed in memory
and executed, simply exits with
status 5. The addresses are shown in
hexadecimal to emphasize that the
addresses are fairly close to the
beginning of a page starting at
0x400000.

Address Value

4000b0 184

4000b1 1

4000b2 0

4000b3 0

4000b4 0

4000b5 187

4000b6 5

4000b7 0

4000b8 0

4000b9 0

4000ba 205

4000bb 128

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Machine language

Machine language is a sequence of bytes

The bytes specify instructions and data

Many instructions include a data address

Branching instructions include instruction addresses

Adding a new instruction changes all subsequent instruction addresses

Changes to data can alter data addresses
I Increasing an array size changes all subsequent data addresses
I Adding a data item can change subsequent data addresses

Each changed address must be changed in all instructions using the
address

This is hard enough to stimulate creativity

People figured out how to use symbolic names for data and
instructions

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Second generation language

First generation - machine language

Second generation - assembly language
I Names for instructions
I Names for variables
I Names for locations of instructions
I Perhaps with macros - code replacement

Third generation - not machine instructions
I Modeled after mathematics - Fortran
I Modeled after English - Cobol
I List processing - Lisp

Fourth generation - domain specific
I SQL

Fifth generation - describe problem, computer generates algorithm
I Prolog

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Assembly example

; Program: exit

;

; Executes the exit system call

;

; No input

;

; Output: only the exit status ($? in the shell)

;

segment .text

global _start

_start:

mov eax,1 ; 1 is the exit syscall number

mov ebx,5 ; the status value to return

int 0x80 ; execute a system call

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Assembly syntax

; starts comments

Labels are strings which are not instructions
I Usually start in column 1
I Can end with a colon to avoid confusion with instructions

Instructions can be machine instructions or assembler instructions
I mov and int are machine instructions or opcodes
I segment and global are assembler instructions or pseudo-ops

Instructions can have operands
I here: mov eax, 1
I here is a label for the instruction
I mov is an opcode
I eax and 1 are operands

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Some assembler instructions

section or segment define a part of the program
I .text is where instructions go for Linux

global defines a label to be used by the linker

global start makes start a global label

start or main is where a program starts
I start is more basic
I main is called (perhaps indirectly) by start

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Assembling the exit program

yasm -f elf64 -g dwarf2 -l exit.lst exit.asm

-f elf64 says we want a 64 bit object file

-g dwarf2 says we want dwarf2 debugging info
I dwarf2 works pretty well with the gdb debugger

-l exit.lst asks for a listing in exit.lst

yasm will produce exit.o, an object file
I machine instructions not ready to execute

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



exit.lst

1 %line 1+1 exit.asm

2

3

4

5

6

7

8

9

10 [segment .text]

11 [global _start]

12

13 _start:

14 00000000 B801000000 mov eax,1

15 00000005 BB05000000 mov ebx,5

16 0000000A CD80 int 0x80

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Linking

Linking means combining object files to make an executable file

For programs with start
I ld -o exit exit.o
I Builds a file named exit
I Default is a.out

For programs with main
I gcc -o exit exit.o
I Gets default start function from the C library

./exit to run the program

64 Bit Intel Assembly Language c©2011 Ray Seyfarth



Assembling, linking and running with ebe

ebe is designed to support assembly programming

Click on a line number to set a breakpoint

Run button in ebe
I assembles with yasm
I links with gcc or ld
I executes the program with gdb

Program stops at breakpoint

Next button to single-step

64 Bit Intel Assembly Language c©2011 Ray Seyfarth


	Goals for this course
	Why study assembly language?
	What is a computer?
	Machine language
	Assembly language
	Assembling and linking

